论文标题

公制度量空间上的准文献映射和曲率

Quasiconformal Mappings and Curvatures on Metric Measure Spaces

论文作者

Deng, Jialong

论文摘要

In an attempt to develop higher-dimensional quasiconformal mappings on metric measure spaces with curvature conditions, i.e. from Ahlfors to Alexsandrov, we show that a non-collapsed $\mathrm{RCD}(0,n)$ space ($n\geq2$) with Euclidean growth volume is an $n$-Loewner space and satisfies the infinitesimal-to-global 原则。

In an attempt to develop higher-dimensional quasiconformal mappings on metric measure spaces with curvature conditions, i.e. from Ahlfors to Alexsandrov, we show that a non-collapsed $\mathrm{RCD}(0,n)$ space ($n\geq2$) with Euclidean growth volume is an $n$-Loewner space and satisfies the infinitesimal-to-global principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

发送 求 20220714641 免费下载英文原文